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LETTER TO THE EDITOR 

‘Living trees’: dynamics at a reversible classical gel 
point 
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5 Corporate Research Laboratories, Eastman Kodak Company, Rochester, 
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Abstract. We discuss the effects of slow, reversible scission of cross-links in polymer networks 
very close to the ‘classical’ gel point in a densely pre-entangled system. We predict that for 
kpr ,  % 1, reversible scission has a significant effect on the relaxation process, yielding a 
terminal time t = k-’  In(pt, k ) .  In these expressions, k is the scission rate constant, p is a 
geometrical factor (proportional to the number of entanglements per chain in the precursor 
system), and 5, is the disentanglement time for the irreversibly cross-linked system as 
calculatedrecently by MRubinstein, S Zurek,TCB McLeishandRCBall (to bepublished). 

There has long been interest in the dynamics of physical sols and gels [l-51. These 
contain polymeric units that cross-link reversibly with one another. If the cross-links are 
sufficiently long lived, then the relevant dynamics (e.g., for determining the viscoelastic 
properties of a sol) involve the diffusive motion of polymer clusters of complicated but 
quenched connectivity. However, if the lifetime of the cross-links is now decreased, a 
regime is soon encountered in which the polymeric motion of the cross-linked molecules, 
though not completely abolished, is strongly modified by the reversible scission and 
reconnection of the cross-links. 

In the present note, we focus on this ‘slow breaking’ regime, as distinct from one in 
which cross-links break and recombine so rapidly that the coherent diffusion of large 
connected clusters may itself be ignored [6]. As in the case of reversibly breakable linear 
polymers [7], the slow breaking regime should be understandable by combining what 
we know about quenched-connectivity branched polymer dynamics, with simple kinetic 
models for cross-link scission and recombination. In what follows, we restrict attention 
to the case of ‘vulcanisation’: gel formation in a densely pre-entangled system. In 
this case the static properties of the system (i.e. the distribution of cluster sizes and 
connectivities) are especially simple, being governed by the Flory-Stockmayer theory 

For the case of quenched connectivities, the dynamics of highly entangled tree- 
molecules near the Flory-Stockmayer gel point were recently studied by Rubinstein, 
Zurek, McLeish and Ball (RZMB) [8]. Below we extend their new results to include the 
effects of slow reversible scission processes. A related discussion of reversible reaction 
effects in the case of percolation-type sols (formed by adding reversible cross-links to 
unentangled polymers or small molecules) is given in [9]. 

~41. 
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We will now consider entangled trees. Let us first recall the ingredients of the RZMB 
theory for such trees. We may designate the cross-link points as ‘sites’ on the tree with 
the original linear polymers as the connecting ‘bonds’. Now observe that a bond between 
sites i and j (say) on a branched polymer can be ranked according to its ‘seniority’ [8], 
which is defined as the minimum over i and j of the length of the longest chemical 
path (LCP) emanating from one and passing through the other. This is expected to be 
comparable to the ‘span’ of the smaller of the two trees that would be created by cutting 
the bond. (The span of a tree is the length of the longest LCP to be found anywhere upon 
it.) RZMB show that the concentration c(m)  of sites of seniority m scales as m-2 near 
the gel point. Note that very senior bonds are rather rare. 

To predict viscoelastic properties we need to estimate the relaxation time t ( m )  of a 
bond whose seniority is m. Treating the surrounding chains as a grid of topological 
constraints, the basic idea used by RZMB is that a given bond can only relax its orientation 
when the smaller of the LCPS in these two trees folds back on itself without enclosing any 
obstacles. (The idea originates in earlier work on the disentanglement of star polymers 
[lo,  111.) This situation is extremely rare; the waiting time depends on the seniority of 
the bond and can be calculated recursively. For a branched polymer in a fixed network, 
the calculation is straightforward. Relaxation of a bond of seniority m must be preceded 
by that of the adjacent bond of seniority m - 1. The relaxation time t,- for the latter 
determines the frequency with which the end of the retracting LCP attempts to overcome 
an entropic barrier to bring it the final step to the m-seniority bond. The probability of 
surmounting this barrier is [ 11,8] exp( - V N ) ,  where I, is a geometrical constant (of order 
one) and @ is the average number of entanglements, with the fixed network, between 
one cross-link point on the tree and the next. (There is also a pre-exponential dependence 
of t, on fi which we may ignore at this level of approximation.) Thus in a fixed network 

- 
t, = exp(vN) ( la)  

t, = to  exp(vmN). (Ib) 

which implies that 

In the gelling system, there is no fixed network of topological constraints; the 
entanglements are with other tree-like molecules. RZMB argue that, as far as the relax- 
ation of a bond of seniority m is concerned, those parts of the surroundings of seniority 
less than m relax fast, and so do not contribute to the topological grid. The number of 
effective entanglements between cross-links is therefore not N but NC(m) (since the 
molecular weight between entanglements scales roughly inversely with concentration 
[ 121). As a result 

t, = t,-l exp(v’N/m2) P a )  

t, = t1 exp[v’N(1 - 1/m)]. (2b) 

with U ’ / V  = 1, which implies 

The stress relaxation function G(t) is the effective elastic modulus of the unrelaxed part 
of the network at time t; at the gel point, this is found to be [8] 

G(t) 5 (1 - l o g ( t / ~ ~ ) / v ’ N ) ~ .  (3) 

Here tl is the relaxation time for a bond of seniority one, which in the tube model of 
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linear chain disentanglement scales as N 2  e x p ( v q .  The longest relaxation time as the 
gel point is approached from below is 

t, = tl exp(v’N) (4) 
which is finite. For incomplete gelation, the longest time corresponds to tM where M is 
a characteristic cut-off scale for the distribution of bond seniorities (so that 
C(m) - m-2f(m/M)); M diverges in a known manner as the gel point is approached [8]. 

It is notable that this self-consistent treatment of entanglements predicts complete 
relaxation of stress in a finite time t,. Hence eventually there must be a crossover to 
unentangled motion of the largest trees; this is considered in [8] and we discuss the effect 
at the end of this paper. 

We now go on to consider reversiblescission of cross-links. The RZMB theory predicts 
a hierarchy of relaxation times for bonds according to their seniority. The rate limiting 
step for relaxation of a given bond is the return to the origin of the shorter of its LCPS 
without enclosing any obstacles of the (dynamically diluted) topological network. 

Consider now the relaxation rate at the gel point for a bond of seniority m, in the 
presence of slow reversible scission reactions. Clearly there is no direct effect on the 
relaxation of this bond unless (i) the LCP in the smaller of the two trees emanating from 
the bond (this is the LCP that has to return to the origin) breaks somewhere along its 
length m; or (ii) the tree containing this LCP undergoes a cross-linking reaction, leaving 
it with an LCP larger than m; or (iii) the LCP in the larger tree breaks within a distance m 
of the bond (so that this becomes the shorter of the two LCPS). 

Suppose we consider simple kinetics with a scission rate k per unit time the same for 
all cross-links. (In the regime of linear response, there is negligible correlation between 
the scission rate at a given bond, and its orientation.) In this case it is clear that the 
characteristic waiting time for process (i), in which the LCP of length m breaks somewhat 
along its length, is 

Tm = l/km. ( 5 )  
Clearly, this is also the waiting time for process (iii). Perhaps less obviously, the charac- 
teristic time for process (ii) is also the same (to which a factor of order unity), as may be 
inferred by applying the principle of detailed balance to a master equation for the 
evolution of the length of the LCP in a tree. To illustrate this, we may for example assume 
that the rate for formation of a cross-link between two clusters is proportional to the 
product of their masses (in keeping with the mean-field approach). The rate constant k’ 
for this process is proportional to k/p, with p the number density of precursor chains, 
as may be confirmed, e.g., by applying detailed balance to the equilibrium between 
monomers and dimers only. The rate for process (ii) may then be approximated as the 
sum over all reactions in which any bond in the tree combines with one on a tree whose 
span m’ is comparable to or larger than m. Converting from m’ to cluster mass p - 
(m’)2, we find that process (ii) occurs at a rate 

k’m2p lm; pl-‘ d p  

where z = 2.5 is the cluster size distribution exponent [4, 81. Performing this integral 
gives a rate of order km, implying a characteristic lifetime for process (ii) that obeys 
equation ( 5 ) ,  as stated above. Hence all the scission and recombination processes in the 
system, in so far as they influence the relaxationof a bond of senioritym, arecharacterised 
by a single time scale Tm. 
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If 3, (equation ( 5 ) )  is long compared with z, obeying equation ( 2 ) ,  then relaxation 
of the bond by the hierarchical retraction process is rapid on the scale of T,, and the 
scission processes only weakly perturb the process. On the other hand, for 5, G t,, 
there is a strong effect. Before the LCP of length m can return to the origin, it will break 
somewhere along its length. We now argue that there is a maximum effective value m* 
of m, fixed by the criterion 

T,* = t,. = t*. (6) 
Note that the seniority of any bond undergoes random and discontinuous changes on 
the time scale t*. 

We therefore expect that all bonds that are more senior than m* should relax 
uniformly (i.e. with a single exponential decay) with time constant z* .  To justify this, 
note that a slower relaxation (say with time z,, >> t*) requires that the bond retains a 
seniority that is large compared with m’ throughout the time interval z,(. The equilibrium 
probability that m 2 m’ at an instant varies as C(m’) - (m’)-*; with of the order of 
t,,/t* independent trials taking place, the chances of a bond retaining a high seniority 
throughout this period are slight indeed. 

Thus the relaxation time for all bonds of m 3 m* is simply z*  as defined in equation 
(6). Inserting into equation (6) the RZMB result (equation ( 2 ) )  for t, and that of equation 
( 5 )  for T,, we find the self-consistent equation 

z*/z, -- exp( -pkz*) (7) 

k, = l/Pt, (8) 

t* = exp(-&*) (9) 

with p = v’N. Introducing a characteristic scission rate 

equation (7) becomes 

where z^* 
We see that for k/kc G 1 the longest relaxation time t* at the gel point is only weakly 

perturbed from the RZMB prediction: z*  = z,(l - pkz,). For k S k,, however, there is 
a strong effect, with the leading behaviour t* -- ln(k)/R. (This may be found by rewriting 
equation (9) as 2(* -- -In ?*)/k and iterating once with respect to 2*.) Equivalently 

z*/z, and k = k/k,. 

t* = k-l ln(pt,k). (10) 
Note that apart from the logarithmic factor, this is the same as the waiting time for a 
break to occur within a fixed (i.e. k-independent) distance of a given bond on the 
tree. For practical purposes, the viscoelastic response function G(t) should be well 
approximated by 

G(t) 2: (1 - l og ( t /~ l ) /v ’N)~  t s z *  (11a) 

G(t) = (1 - log(~*/z~) /v’Z?)~  exp( - t / z*)  (1lb) t > t*. 

The second form reflects the crossover to single-exponential decay, corresponding to 
the fact that all bonds of seniority >>m* have essentially the same relaxation time. 

We now discuss our results. Clearly, if we are not at, but below the gel point, the 
above arguments carry-over so long as the RZMB relaxation time zM for the most senior 
bonds present is long compared with z*; otherwise, of course, relaxation is completed 
before scission processes come into play and the original RZMB analysis is adequate. 
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We may also discuss the response of the system above the gel point. In the quenched 
system, there are bonds of infinite seniority (the backbone of the infinite cluster) 
presumably with infinite relaxation times. However, with reversible reactions present, 
no bond is likely to remain in this state for a long time compared with z* .  Thus our 
prediction for the longest relaxation time and for G(t) should remain valid in a finite 
interval above the gelation threshold. (Indeed, this threshold may be very difficult to 
identify precisely.) Our arguments finally break down when the assumption of a tree- 
like molecular structure ceases to be valid on the scale of the characteristic chemical 
path length m*. This is when the characteristic span of the largest finite clusters present, 
which varies [8] as ( p  - p J ' ,  is of order m*. 

Finally, we may consider the crossover to unentangled motion which occurs for the 
largest clusters very close to the gel point. It is known [4] that there exists a characteristic 
cluster span m, - $I6 beyond which the static exponents of Flory-Stockmayer theory 
cross over to those of percolation. According to [8], this is the first way in which the 
hierarchical disengagement model breaks down (i.e. it occurs before the nominal onset 
of disentangled dynamics for the largest trees). Clearly, the arugments we have given 
for the case of reversibly breakable cross-links continue to apply so long as m* < m,. If 
breaking is so slow that m* 3 m,, one should consider motion of breakable clusters of 
the percolation type, as discussed in [9]. 

In summary, we have extended recent work on the entangled motion of branched 
polymers close to the classical gel point, so as to allow for the effects of slow, reversible 
scission of cross-links. The main effect is to cut off the relaxation spectrum at a charac- 
teristic time z*  which depends on the scission rate constant k according to equation (10). 
We hope that our predictions will stimulate new experiments on reversibly cross-linking, 
densely entangled systems, close to the gel threshold. At present the main data, e.g., 
for end-linking ionomeric materials, concern systems in the well-gelled regime [5] .  It 
should be possible to decrease the connectivity deliberately, for example by mixing 
telechelic ionomers with various proportions of monofunctional chains. 

One of us (MEC) wishes to thank Professor Fyl Pincus, whose lectures at Geilo provided 
a simulating working environment in which to study this problem. He also thanks Dr 
Moti La1 for a simulating discussion. TCBM is supported by IC1 plc. 
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